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Figure 1: Overview of the DpLens visual analytics system, including (A) Control Panel for configuring training
parameters, environment settings, and models; (B) Training Distribution View and Table View for monitoring
performance metrics and multi-scale regional data; (C) Episode Overview combining dimensionality-reduced state
layouts and Supply-Demand Imbalance Matrix for behavior analysis; (D) Map View visualizing spatial demand,
supply-demand imbalance, and dispatch flows with time playback; (E) Time View displaying spatiotemporal action
patterns and feedback; (F) Demand View illustrating temporal demand variations across clusters via radial bar
charts; (G) Attention View revealing spatial dependency modeling through Critic attention weights; and (H) Policy
Interpretation View showing 3D embeddings of state-action mappings, policy clusters, and decision boundaries.

ABSTRACT

Taxi dispatching, as a critical task in urban transportation
systems, aims to optimize order matching and reduces empty
mileage by reallocating idle vehicles from surplus supply
areas to high-demand regions, thereby improving system ef-
ficiency and economic benefits. In recent years, Multi-Agent
Reinforcement Learning (MARL), with its ability to model
regional collaborative behaviors and dynamic optimization,
has become a prominent technical approach to solving this
problem. However, existing methods still face challenges in
practice. On one hand, the heterogeneity and non-stationarity
between regions at the urban scale increase the complexity
of policy learning, making it difficult to achieve efficient
coordination of dispatching behaviors. On the other hand,
the dispatching process highly depends on temporal context,
and the lack of model interpretability restricts practical ap-
plications and policy tuning. To address these issues, we
propose a region-level MARL dispatch framework, where
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regions are treated as agents and the action space is hetero-
geneous. This framework models regional state perception
and cross-region vehicle migration behaviors to achieve joint
optimization among multiple agents. Building on this, we de-
sign and implement a visual analytics system, DpLens, which
combines multi-view strategy analysis and key state identifi-
cation to support users in exploring the evolution of dispatch
strategies and the collaboration mechanisms among agents,
from both macro and micro perspectives and across multiple
dimensions. Through case studies of typical urban dispatch
tasks and user studies, we demonstrate the effectiveness of
our approach in enhancing model interpretability, assisting
strategy optimization, and improving system reliability.

Index Terms: Visual Analytics, Taxi Dispatching, Rein-
forcement Learning, Agent.

1 INTRODUCTION

Efficient taxi dispatching is a cornerstone of modern urban
transportation systems, playing a pivotal role in balancing
vehicle supply with passenger demand.

Its core objective is to strategically redeploy idle vehicles
from areas of oversupply to regions with concentrated de-
mand, thereby enhancing order matching rates, minimizing



unproductive empty cruising (deadheading), and ultimately
optimizing the overall operational efficiency and economic
viability of the taxi fleet [1,39]. As cities continue to expand
and traffic dynamics become increasingly complex, tradi-
tional dispatching methods often struggle to adapt effectively,
necessitating more intelligent and responsive solutions.

In recent years, MARL has emerged as a powerful
paradigm for addressing complex decision-making problems
in dynamic, multi-entity environments, making it particularly
well-suited for the taxi dispatching domain [10,36]. MARL
frameworks enable the modeling of cooperative and compet-
itive behaviors among different entities—such as individual
taxis or more abstract geographic regions—and learn dis-
patch strategies through interaction with the environment.
This capability to model regional collaborative behavior and
perform dynamic optimization has shown great potential
in improving dispatching performance. However, applying
MARL to large-scale urban taxi dispatching in practice still
faces significant challenges. Firstly, due to spatial hetero-
geneity in demand patterns across different regions at a given
time—and the temporal dynamics of these patterns—optimal
dispatch behavior between regions becomes highly unstable.
This increases the difficulty of policy learning and coopera-
tion in distributed multi-agent dispatching systems. Secondly,
the dispatching process is closely intertwined with tempo-
ral context; decisions made at one point in time can have
cascading effects on future system states, requiring models
to capture and leverage such temporal dependencies. Com-
pounding these issues is the ”black box” nature of many
reinforcement learning models. The lack of interpretability
in the learned policies restricts their practical adoption, as
operators and stakeholders often require an understanding
of why certain dispatch decisions are made to build trust,
facilitate debugging, and enable effective policy refinement.

To address these limitations, this paper proposes a novel
regional-level MARL dispatching framework, termed Clus-
tered Attention-based Multi-Agent Soft Actor-Critic (CL-
ATT-MASAQ). In this approach, we employ clustering tech-
niques to identify regions with similar demand patterns, al-
lowing agents within the same cluster to share a policy net-
work and thus learn more efficient and consistent cooperative
strategies. Furthermore, we introduce a multi-head attention
mechanism into the critic network, enabling agents to selec-
tively focus on critical agent information when evaluating
decision value, thereby achieving more effective and scalable
learning in complex multi-agent environments. By model-
ing regions as agents with heterogeneous action spaces and
incorporating the aforementioned mechanisms, the frame-
work achieves system-level joint optimization objectives.
Building upon this MARL framework and to specifically
tackle the challenges of interpretability and policy optimiza-
tion, we design and implement a visual analytics system
named DpLens, which integrates multi-view policy analy-
sis, critical state identification, and interactive exploration
functionalities. The system supports users in exploring the
evolution of dispatching strategies and complex inter-agent
cooperation mechanisms across multiple analytical dimen-
sions, from the macro level (city-wide) to the micro level
(individual regions). Through comprehensive case studies
on representative urban taxi dispatching tasks, supported by
user studies, we demonstrate the effectiveness of the pro-
posed MARL framework and the DpLens system in enhanc-
ing model interpretability, assisting policy refinement, and
ultimately improving the reliability and trustworthiness of
intelligent dispatching systems.

* We propose a novel region-level MARL taxi dispatch-
ing framework that integrates clustering and attention
mechanisms. The framework enables agents in regions
with similar patterns to share policies via clustering

to improve learning efficiency and enhances selective
information exchange among agents through attention
mechanisms, thereby achieving more efficient vehicle
reallocation coordination and joint optimization.

* We design and implement DpLens, a visual analytics
system that enables users to explore, understand, and
refine learned policies, thereby further enhancing the
interpretability of MARL models and supporting effec-
tive policy optimization.

* Through case studies and user evaluations, we demon-
strate that the synergy between our MARL framework
and the DpLens system significantly improves the in-
terpretability of vehicle dispatching strategies and en-
hances the reliability of the dispatch system in applica-
tions simulating real-world scenarios.

2 RELATED WORK

In this section, we summarizes the research related to this
study, focusing on three main areas: the development of
taxi dispatching, MARL, and the associated visual analytics
research.

2.1 Method of Taxi Dispatching

Taxi dispatching has long been a critical research topic in
intelligent transportation systems. Early approaches predomi-
nantly relied on rule-based or heuristic strategies, employing
simple principles such as nearest vehicle assignment and
queuing theory. While these methods are easy to implement,
they struggle to cope with the dynamic and complex nature
of urban environments [11,12]. Subsequently, researchers be-
gan formulating the dispatching problem as an optimization
task, leading to the development of variants of the Vehicle
Routing Problem (VRP), network flow models, and dynamic
matching algorithms [7, 16]. For instance, the work by Yan
et al. [35] integrates dynamic pricing and adaptive waiting
mechanisms to enhance ride-hailing platforms. Although
such optimization-based methods offer theoretical advan-
tages, they often depend on strong assumptions about system
behavior, limiting their adaptability in real-world applica-
tions.

In recent years, with the increasing availability of large-
scale trajectory data and advancements in computational
power, data-driven methods have garnered significant at-
tention. Researchers have employed time series models,
machine learning, and deep learning techniques to forecast
passenger demand, identify hotspots, and predict order infor-
mation [19,21,32], which serve as the basis for designing
more efficient dispatching strategies. For example, Si et
al. [26] proposed a multi-agent hierarchical reinforcement
learning framework to optimize vehicle dispatch and route
planning in intercity ride-sharing, thereby improving system
profitability and order fulfillment rates. These methods have
also been extended to incorporate more complex factors and
application scenarios [3, 18,33], addressing increasingly so-
phisticated dispatching tasks. For instance, Li et al. [13]
addressed the scheduling and routing problem of a heteroge-
neous fleet consisting of vehicles and drones for same-day
delivery, proposing a novel hierarchical decision-making
approach based on deep reinforcement learning.

Although multi-agent methods are receiving growing at-
tention [24], enabling agents to effectively filter and uti-
lize peer information in complex interactions for improved
decision-making, current research and analytical tools re-
main limited in their ability to intuitively understand these
intricate interaction processes and to reveal the emergent
mechanisms of collective intelligence.
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Figure 2: Overview of the framework for this work consists of three modules: (1) Data Preprocessing, performing regional order
matching based on grid partitioning results, and conducting clustering based on the DTW results of time series from each region
to obtain clusters with similar patterns; (2) CL-ATT-MASAC, regional multi-agent reinforcement learning process, including
Architecture of Actor/Critic, Environmental Simulator, and Strategy Formulation; and (3) Visualization, interactive visual
analytics focusing on model training performance and policy learning trajectories, aiming to enhance model interpretability.

2.2 Application of Reinforcement Learning

In recent years, reinforcement learning (RL) has gained
significant attention as a learning paradigm capable of au-
tonomous decision-making and policy optimization in dy-
namic environments. With the introduction of deep neural
networks, deep reinforcement learning (DRL) has demon-
strated remarkable performance in high-dimensional state
spaces and has been widely applied in areas such as re-
source scheduling, traffic signal control, and robotic nav-
igation [30,37]. To address the challenges posed by com-
plex tasks and large-scale environments, researchers have
proposed various extensions, including MARL, hierarchical
reinforcement learning, and model-based RL, to enhance
scalability, stability, and generalization [8,20].

In the transportation domain, RL has been extensively
used to tackle problems such as dynamic taxi dispatching [4],
vehicle routing [22], electric vehicle charging scheduling
[34], and optimization of ride-sharing platforms [2], demon-
strating superior adaptability and performance over tradi-
tional methods. For instance, Shi et al. [4] developed a multi-
agent platform, MARLAT, for modeling large-scale urban
vehicle dispatching. In addition, recent studies have begun to
focus on multi-objective optimization and uncertainty mod-
eling, exploring how to balance dispatching efficiency with
user satisfaction, energy consumption, and system robust-
ness [5,40].

Despite the growing application of RL in transportation
and urban computing, its “black-box” nature remains one of
the major obstacles to real-world deployment. Since agent
behaviors rely on the complex learning of state-action map-
pings and long-term reward functions, the resulting policies
are often difficult to interpret or validate, posing challenges to
system trustworthiness and human-AlI collaboration [17,23].
This issue is further exacerbated in multi-agent scenarios,
where interactions among individual policies increase the
overall model opacity [14]. Therefore, leveraging visual ana-
lytics or interpretability mechanisms to help users understand
the policy learning process, environmental perception, and
behavioral evolution of agents has become a critical direction
in current RL research.

2.3 Visual Analytics for Reinforcement Learning

In RL tasks, visual analytics serves as a vital tool for un-
derstanding policy evolution, state space exploration, and
reward dynamics [29]. Early efforts primarily focused on
visualizing fundamental RL elements, such as agent learning
trajectories, heatmaps of value functions (e.g., Q-values), and
probability distributions of policy choices. These visualiza-

tions help users gain insights into agent behavior patterns and
learning processes [27,28]. For deep reinforcement learning
models, researchers have also employed techniques to visu-
alize neural network activations, attention mechanisms, and
saliency maps to provide preliminary explanations for agent
decision-making [6,31].

As MARL scenarios grow increasingly complex, some
studies have begun leveraging visual analytics to analyze
agent interactions, cooperation and conflict, and the emer-
gence of group strategies [38]. These systems typically offer
interactive interfaces that enable users to track learning dy-
namics, compare different strategies, and begin to interpret
the decision logic of individual or collective agents. For
instance, DRLViz [9] integrates interactive memory dimen-
sion reduction and error analysis tools to assist experts in
understanding the complex internal memory and decision-
making mechanisms of DRL agents, thereby enhancing over-
all model interpretability. Similarly, the system developed
by Shi et al. [25] helps users gain deeper insight into the
training processes and learned cooperative strategies of multi-
agent Deep Deterministic Policy Gradient (DDPG) models.
Therefore, developing interactive visual analytics platforms
holds promise for improving the interpretability of RL-based
dispatching strategies. This study is the first to introduce
visual analytics into the vehicle dispatching problem, advanc-
ing explainability research in complex multi-agent decision-
making tasks.

3 OVERVIEW
3.1 Data Description

In this study, the experimental data are sourced from the
publicly available Taxi and Limousine Commission (TLC)
Trip Record Data released by the New York City TLC. This
dataset has been continuously published since 2013 and in-
cludes extensive trip records from yellow taxis, green taxis
(which serve different city zones based on vehicle color),
and for-hire vehicles such as Uber and Lyft. We primarily
use the yellow taxi trip data, as these vehicles mainly op-
erate in Midtown Manhattan and other major commercial
areas, constituting the core of New York City’s street-hail
taxi services.

Each trip record includes detailed information such as
pickup and drop-off timestamps, pickup and drop-off loca-
tions, trip distance, itemized fare components, rate code,
payment method, and the number of passengers reported by
the driver. In our experiments, we use a total of 269,154
trip records from January 1, 2016, for model training, and
240,872 trip records from January 3, 2016, for model testing.



3.2 Design Goals

The primary goal of this visual analytics system is to facili-
tate comprehensive analysis of complex dynamics in MARL-
based taxi dispatch frameworks. DpLens is designed to im-
prove the interpretability of learned dispatching policies,
assist in diagnosing emergent agent behaviors, and support
iterative policy refinement to enhance scheduling efficiency
and system reliability. To ensure practical relevance, the
system was developed through an iterative co-design process
with experts in MARL and intelligent transportation. Discus-
sions focused on key challenges such as understanding policy
evolution, analyzing coordination mechanisms among agents,
and validating model-driven decision processes. These ef-
forts led to the formulation of four design goals:

G1: Support comprehensive monitoring and diagno-
sis of MARL model performance and policy learning.
Provide an overview of model effectiveness and learning
progress, enabling detection of abnormal behaviors at both
global and regional scales.

G2: Enable multi-level exploration of learned policies
and agent behaviors. Support spatiotemporal analysis of
agent decisions, state transitions, and rewards from both
macro and micro perspectives.

G3: Reveal coordination mechanisms and emergent
system dynamics. Analyze inter-agent cooperation and vehi-
cle flow to understand how local actions lead to system-level
behaviors and efficiency.

G4: Assist in interpreting key decisions and support
interactive policy optimization. Identify critical states and
events affecting performance, and enable comparison of dif-
ferent policy versions to enhance model reliability.

3.3 Analysis Framework

Based on the aforementioned objectives, we have designed
and implemented a visual analytics framework tailored for
taxi dispatching, as illustrated in the Figure.2. This frame-
work consists of three main modules: data preprocessing,
CL-ATT-MASAGC, and visual analytics. In the data prepro-
cessing module, we first match taxi order data to spatially
partitioned urban grids, generating region-level demand time
series. To identify areas exhibiting similar temporal demand
dynamics, we employ Dynamic Time Warping (DTW) to
compute pairwise distances between regional time series,
followed by clustering on the resulting distance matrix. The
derived clusters serve as the foundation for defining and
modeling agents in the subsequent reinforcement learning
module. The CL-ATT-MASAC module features a region-
level MARL framework. Each agent is modeled using an
Actor/Critic architecture and is situated in a simulated envi-
ronment replicating real-world dispatch scenarios. Building
upon the Soft Actor-Critic algorithm, we integrate an at-
tention mechanism to enhance inter-agent communication,
thereby improving the effectiveness of policy learning and co-
ordinated decision-making in complex urban traffic contexts.
In the visualization module, we integrate the analytical and
training outputs from the previous modules into an interac-
tive visual interface. This system supports the tracking of the
reinforcement learning training process, enables exploration
of agent behavior trajectories, and facilitates comparison of
learned strategies. By incorporating human-in-the-loop anal-
ysis, the visualization module enhances the interpretability of
learned policies, assists domain experts in understanding the
underlying decision logic, and ultimately contributes to opti-
mizing dispatch strategies and increasing the trustworthiness
of model deployment.

4 METHODOLOGY

Our proposed method aims to address the dynamic nature
of taxi dispatching in complex urban environments and miti-
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Figure 3: Detailed architecture of CL-ATT-MASAC. Clus-
tered agents share parameterized Actor networks. The Critic
employs multi-head attention to capture inter-agent interac-
tions. Output actions are passed to the scheduling module
and environment simulator.

gate instability during the agent policy learning process. It
comprises three main components: travel pattern-based re-
gional clustering, an CL-ATT-MASAC MARL module, and
a scheduling strategy execution module based on bipartite
graph matching. The overall workflow of the method is
illustrated in Figure.3.

4.1 Regional Clustering and Agent Construction

To mitigate the learning interference caused by regional het-
erogeneity in large-scale multi-agent systems, we adopt a
demand-driven clustering approach before training. By ana-
lyzing travel demand time series, regions exhibiting similar
temporal patterns are grouped into clusters. Agents within
the same cluster share a common strategy network, promot-
ing coordinated learning and reducing redundancy. This
cluster-based design not only enhances cooperation among
agents but also improves the overall learning efficiency and
policy stability. The clustering process involves the following
key steps:

Regional Time Series Construction: We divide the re-
search city into n = 111 non-overlapping spatial grid regions
and the day into m = 144 10-minute time slots. The order
volume in each time slot is counted for each region, forming
the daily order demand sequence of that region. The demand
sequence for region i is denoted as:

di = [d},d?

i ljy.-

'vdimﬂ 1)

where d! represents the number of orders in region i at time
slot 7.

Inter-Region Similarity Calculation: We use the DTW
method to calculate the similarity between the time series of
any two regions. The DTW distance between regions i and j
is defined as:

o “_
DTW(i,j) =min Y |dj~dj] @)
(u,v)epP

where P represents all valid alignment path sets. DTW is par-
ticularly suitable for modeling temporal similarities between
sequences with time offsets or rate differences.

Regional Clustering: After obtaining the DTW dis-
tance matrix between regions, we perform agglomerative
hierarchical clustering. The optimal number of clusters
K is determined using the elbow method, which evalu-
ates the within-cluster sum of squares (WCSS). Once clus-
tering is completed, the regions are grouped into clusters



C ={c1,¢2,...,cx }. Each cluster shares the same strategy
network. The input state tensor of cluster k includes rny
agents, with each agent having a state representation of di-
mension dimg.

4.2 Clustered Attention-based Multi-Agent Soft
Actor-Critic

Capturing the dynamic interactions among multiple taxis and
the stochastic nature of the urban environment requires a
principled decision-making framework. We therefore formu-
late the scheduling task as a Markov game, which enables
each agent to make sequential decisions based on its local ob-
servation while accounting for the influence of other agents’
actions over time. Specifically, the problem is modeled as
a Markov game G = (n,S,A, PR, }), where n is the number
of agents, S is the state space, A is the action space, P is the
state transition probabilities, R is the reward function, and y
is the discount factor. Therefore, the state vector of region i
at time slot ¢ is defined as:

o) = S,-(t)—Di(t)—/.L’sin(Zn-h)7€0g(2ﬂ:-h)}
©)

(o} 24 24

where D;(r) and S;(r) represent the predicted demand and
supply of region i at time ¢, respectively; u and ¢ denote
the mean and standard deviation of the training data used for
normalization; and h = | (t mod 144)/6] denotes the hour
(0-23) corresponding to time slot ¢.
The agent selects actions based on the strategy network
Me;:
ai(t) = pg (0i(t)), ai(t) € [1,1] ©)

To further enhance this modeling capacity, we introduce a
multi-head attention mechanism into the Critic. This design
enables the network to attend to different aspects of inter-
agent dependencies in parallel. Each head independently
learns a unique representation of interaction patterns, allow-
ing the Critic to integrate diverse relational information. This
multi-head formulation significantly boosts the flexibility
and robustness of strategy evaluation, especially in highly
dynamic and heterogeneous environments.

The learning process in our CL-ATT-MASAC framework
involves both Actor and Critic networks. The Actor net-
work for each agent i is optimized via policy gradient, which
encourages actions that lead to higher estimated Q-values:

VoJ (i) =Ex a [Voli(0i(1)) - Va, Qg (X5 AD)] (5)

Meanwhile, the Critic network is trained by minimizing
the mean squared error between the predicted Q-value and
the target value computed using the next-step Q-value and
reward:

L(¢)) =Ex a,x [(qu- (X£,A7) —Y)z} ,
y= ri(t)+’)/Q¢l/( 15A7)

6

To enhance the critic network’s capability in modeling key
interaction patterns within the joint state-action space, this
work extends the critic architecture in the MASAC frame-
work by incorporating a multi-head attention mechanism.
This mechanism dynamically captures important inter-agent
dependencies and enables weighted information aggregation.
Specifically, each agent’s state is used as the query, while the
concatenated states and actions of all agents are embedded as
keys and values. Attention weights are computed based on
query-key similarity, and a weighted sum over the values pro-
duces the interaction embedding. Multiple attention heads
operate in parallel to extract diverse interaction perspectives,

which are then concatenated and fed into the Q-network for
value estimation.

[ K\T
W W,
head;, = Softmax (W) (OjW/Y) @)

where o; represents the state of the current agent, o; is the
embedding of the concatenated states and actions of other
agents, and WhQ,WhK ,Whv are the parameters for the h-th
attention head.

The immediate reward r;(¢) is determined by both the
demand-supply ratio in region i at time ¢ and the agent’s
action, where the p;() reflects the local imbalance between
customer requests and available vehicles in that region.

di(t)

si(t)

4.3 Scheduling Strategy Execution through Bipar-
tite Graph Matching

The reinforcement learning model outputs continuous actions
a; € [—1,1], which we discretize using a threshold &:

pi(t) =

®

Ifa; > &, region is a source(send);
If a; < —&, region is a sink(accept); 9)
If |a;| <&, region is idle(do_nothing).

The number of vehicles scheduled from the sending region
is x; = |a; - s;|, and the expected dispatch amount for the
receiving region is y; = |a; - d}|.

We model the scheduling problem as a bipartite graph
G = (Vire, Vsink, E), where the edge weight d;; represents the
Manhattan distance. The goal is to maximize the supply-
demand matching while minimizing the total scheduling
distance, with the optimization objective:

(1171]1;1673‘/12 ij ‘xl yj| (10)

To handle differing numbers of source and sink nodes, we
introduce virtual nodes, transforming the problem into a
standard assignment problem. This is solved using the Hun-
garian algorithm (Kuhn-Munkres Algorithm) to find the opti-
mal scheduling pairs, which are then used to update vehicle
states in the environment simulator, completing the training-
execution closed loop.

5 VIsSuAL DESIGN
5.1 Control Panel

To support analysts in flexibly configuring training param-
eters, environmental settings, and algorithmic models, we
designed a control panel view (as shown in Figure.1A). This
view enables users to select training- and environment-related
parameters, switch between different MARL strategy models,
and specify the Epoch, Time, and RegionID for the current
system analysis. In addition, users can adjust key hyperpa-
rameters, including the learning rate (LR), discount factor
(Gamma), soft update coefficient (Tau), and batch size, other
views will be updated accordingly with these parameters. By
clicking the “Submit Config” button, users can submit the
configured parameters to initiate the training process. The
intermediate results are saved to the system’s data stream to
support subsequent multi-perspective visual analysis.

5.2 Training Distribution View

We designed the Training Distribution View (as shown in Fig-
ure.1B1) to support analysts in comprehensively monitoring
the training performance and policy learning effectiveness



of MARL models (G1). This view dynamically presents
the distribution trends of key performance metrics—such as
Actor Loss, Critic Loss, Alpha Loss, Reward, and Match
Rate—through a set of multi-dimensional metric curves. It
enables users to grasp the model’s convergence process from
a global perspective and promptly identify performance fluc-
tuations and training anomalies. The horizontal axis repre-
sents the training iterations, while the vertical axis in each
sub-view reflects the value changes of the corresponding
metric, intuitively illustrating the dynamic adjustment and
optimization of the model throughout training. To enhance
analytical flexibility, the view also provides interactive con-
trols including “Sort by metric” and “Order,” allowing users
to rearrange the display order and prioritize metrics of in-
terest based on specific analytical goals. This facilitates
focused tracking of critical indicators and the early detection
of anomalies (G2).

5.3 Table View

Aiming to facilitate rapid access to and comparison of key
scheduling system data across different scales, we designed
the Table View (as shown in Figure.1B), which provides a
multi-dimensional, region-centric (Region ID, or RID) in-
formation display. It supports fine-grained data exploration
and interactive analysis based on specific epochs and time
steps. At the foundational level, the view presents core met-
rics for each region within the current epoch, including Total
Demand (TDem), Cluster ID (CID), Match Rate (MRate),
and Demand Tendency. These indicators help users gain a
global understanding of model performance at the regional
level, enabling timely identification of potential issues such
as demand surges or low match rates (G1).

To support more detailed analyses at the epoch-time gran-
ularity, the view further includes additional columns such
as Action Value, Reward, Supply-Demand Ratio, and Im-
balance (supply-demand gap). These metrics are enriched
with lightweight visual elements such as bar indicators, ring
charts, and micro trend plots, allowing users to intuitively
compare policy performance and agent behavior differences
across regions and time periods (G2). For enhanced ana-
Iytical flexibility, the Tabular View supports customizable
column ordering, enabling users to rearrange fields based
on specific task priorities. This empowers targeted explo-
ration of key metrics and improves insight efficiency (Gl1,
G2). Overall, the view enables seamless navigation between
macro-level patterns and micro-level details, supporting com-
prehensive understanding and anomaly diagnosis from a
global-to-local perspective (G1).

5.4 Episode Overview

To help analysts gain a comprehensive understanding of the
policy behavior distribution and decision evolution within
a specific region for each epoch, we designed the Episode
Overview View (as shown in Figure.1C). This view focuses
on the target analysis region (RegionlD) across all time steps
within the current epoch. By integrating dimensionality-
reduced state layouts, action type encodings, and time-series
mappings, it supports interactive analysis from global states
to localized behaviors (G1, G2).

The scatterplot (Figure.1C1) visualizes the dimensionality-
reduced regional state vectors(Equation 3) using t-SNE,
where each point represents the RegionID’s state at a specific
time step, RegionID can be specified through the dropdown
menu in the control panel. The shape of each point encodes
the agent’s action decision under that state, intuitively re-
vealing the distribution patterns of policy behaviors in the
state space and facilitating the identification of behavioral
evolution paths and localized strategy variations. The color
intensity reflects the temporal order, with darker colors in-
dicating later time steps, allowing analysts to observe the

phase-wise changes and transitions of agent behavior over
time (G2).

Interactive rectangular brushing is supported, enabling
users to select subsets of interest within the state space and
filter specific temporal segments, thereby enhancing hierar-
chical exploration from a global to a local level (G2). The
filtering results will be linked with the Supply-Demand Im-
balance (SDI) matrix view on the right (Figure.1C2). By
default, the right panel displays the average actions and SDI
status across all time slices for the region specified by the
selected RegionID in the control panel, along with its neigh-
boring regions(G1). If the user selects a specific time range
in the scatter plot on the left, the matrix on the right will
be updated accordingly to reflect the average actions and
SDI distribution for the selected time period, facilitating
time-specific analysis and comparison. In the matrix, the fill
color of each cell encodes the SDI value—green indicates
sufficient supply, red denotes excessive demand, and color
intensity reflects the magnitude of the imbalance—helping
analysts diagnose the relationship between local environ-
mental states and agent strategies (G1). Arrows within the
matrix indicate inter-regional dispatch flows, pointing toward
the dispatched regions. The thickness of each arrow repre-
sents the number of vehicles dispatched, providing a clear
depiction of the agent’s spatial decision-making and resource
movement strategies.

5.5 Map View

The Map View (Figure.1D) helps analysts explore the op-
erational status and policy effects of the scheduling system
across time and space, enhancing strategy interpretability
and situational awareness. To reveal spatial similarities and
differences among regions, a cluster-based color layer is over-
laid on the map. The Demand Layer (Figure.1D1) visualizes
regional demand (Demand) using a heat-grid, where color
depth in an orange gradient encodes demand intensity, mak-
ing it easy to identify high-demand hubs and low-demand
peripheral areas. Users can switch to the Supply-Demand
Imbalance (SDI) Layer (Figure.1D2), where red-green col-
ors represent SDI values (as in Figure.1C2), and saturation
indicates the magnitude of imbalance. This helps quickly
locate areas with mismatched supply and demand (G1, G3).
To support the analysis of spatiotemporal scheduling
behavior, the view includes a time playback feature (Fig-
ure.1D3). Users can navigate through time using a slider or
playback controls to observe how agent behavior and system
states evolve over an epoch. Vehicle dispatches between
regions are visualized using streamlines: the origin region
is marked with a dot, and the thickness of the streamline
encodes the number of dispatched vehicles. This design
facilitates understanding of agents’ decision-making and co-
ordination mechanisms under varying conditions (G2, G3).

5.6 Time View

The Time View (Figure.1E) enables analysts to explore the
micro-level behavioral evolution of scheduling strategies
from a temporal perspective (G2). The vertical axis repre-
sents different regions, while the horizontal axis denotes time
steps. Each cell corresponds to a specific region at a particu-
lar time, showing the agent’s action and the resulting reward.
This design balances fine-grained local insights with global
time-series readability, supporting multi-scale analysis from
detailed spatiotemporal behavior to system-wide trends (G1,
G4).

Within each cell, a circular marker encodes the agent’s
action type using color: green for Send, orange for Accept,
and gray for Do Nothing, clearly illustrating spatiotemporal
patterns and agent preferences (G2). The transparency of the
color reflects the action value, which indicates the propor-
tion of vehicles dispatched or received. Surrounding each



circle, semi-arc indicators further encode feedback signals:
the right arc shows positive (blue) and negative (red) rewards
at that time step, while the left arc represents positive (pur-
ple) and negative (green) state changes. These visual cues
reveal the causal relationship between agent decisions and
environmental feedback (G3).

5.7 Demand View

Demand View (Figure.1F) is designed to support analysts in
understanding demand pattern differences and their evolution
across multiple regions from both temporal and clustering
perspectives. The view adopts a radial multi-layer bar chart
layout, unfolding average demand over time for each cluster
during the scheduling cycle. This design enhances intuitive
perception of global dynamics and key time periods (G1).
Each ring represents a cluster, with the circular direction en-
coding time, advancing clockwise to reflect temporal progres-
sion. Segments within each ring represent demand intensity
at specific time steps, filled with an orange gradient—darker
shades indicate higher demand, making it easier to spot peaks
and troughs. Rings are arranged from inner to outer based on
total demand per cluster, highlighting the “core—periphery”
structure of regional demand. A cluster selection panel at
the top (e.g., “Cluster Average”) allows users to focus on
individual clusters or compare multiple clusters, supporting
layered analysis between local and global demand patterns
(G2).

5.8 Attention View

Designed to help analysts understand the spatial dependency
modeling of the CL-ATT-MASAC model and reveal the
Critic’s attention patterns and key decision features during
policy learning, the Attention View (Figure.1G) visualizes
how the model captures spatial correlations between regional
states across different epochs, enhancing the interpretability
of the policy learning mechanism (G4). A matrix layout
displays region IDs on both axes, where each cell represents
the attention weight assigned by the Critic under specific
clusters and attention heads. Deeper green shades indicate
higher importance, revealing the strength of spatial depen-
dencies (G1). Interactive controls located at the top-right
allow switching between cluster IDs and attention heads, fa-
cilitating multi-scale and multi-path analysis of the model’s
attention differences (G2). Throughout the training process,
analysts can track changes in the model’s focus on core, pe-
ripheral, and special-state regions. Interactive exploration
supports investigating coordination tendencies and spatial
decision-making mechanisms during policy evolution (G3).

5.9 Policy Interpretation View

To help analysts understand agent policies in high-
dimensional state spaces and their relationships with state fea-
tures, we designed a policy interpretation view (Figure.1H).
This view visualizes the distribution of agent action prefer-
ences across different states using a 3D embedding approach,
supporting interpretability analysis and key behavior identifi-
cation (G4).

Since the internal structure of traditional Actor networks
is invisible and difficult to interpret, this view offers a vi-
sual approximation of the Actor’s decision-making structure,
enabling researchers to infer the Actor’s action selection pat-
terns and preference structures under various state conditions,
thereby aiding in the analysis of the learning process. Specif-
ically, the view maps state vectors to three dimensions: nor-
malized supply-demand difference (Equation 3) and hourly
cyclic features (sine and cosine values), to capture key state
characteristics. Action types are color-coded to intuitively
represent the distribution of actions across different states.
Cluster centers (pink polyhedra) represent stable and typical

action patterns output by the Actor within a state cluster,
reflecting the main trends of the policy. Boundary points
(black) indicate transition regions between different policy
patterns, revealing strategy shifts and boundary structures
that help explain the continuous variation of policies in the
state space. Through this interpretability view, analysts can
assess the behavioral stability and policy reliability of the
Actor during the multi-agent reinforcement learning process.

6 EVALUATION
6.1 Quantitative Analysis

To further validate the effectiveness of our proposed method
in practical scheduling tasks, we conducted comparative ex-
periments between CL-ATT-MASAC and the existing state-
of-the-art method META [15], the results are shown in Ta-
ble.1.

Table 1: Comparative Results with Baseline Method.

Model Order Matching Rate (%)
META 62.50 10.97
Ours 72.16 6.53

Avg. Relocation Count

Table 2: Ablation Study Results on Attention and Cluster
Modules.

Model Order Matching Rate (%)  Avg. Relocation Count
MASAC 56.89 10.97
ATT-MASAC 64.56 10.23
CL-MASAC 58.47 9.88
Ours 72.16 6.53

It can be seen that CL-ATT-MASAC significantly outper-
forms META in order match rate, with an improvement of
9.66% (from 62.50% to 72.16%), indicating that our method
can allocate orders more efficiently and effectively alleviate
resource idleness. Additionally, the average number of relo-
cations in CL-ATT-MASAC decreased from 10.97 to 6.53 (a
reduction of 4.44), greatly enhancing scheduling efficiency
and reducing system operating costs. These results demon-
strate that our method not only improves service quality but
also achieves better resource utilization efficiency.

In the ablation study, we analyzed the impact of intro-
ducing the attention mechanism (ATT) and the clustering
module (CL) within the multi-agent reinforcement learning
framework on model performance, focusing on their effects
on order match rate and average relocation times. The results
are shown in Table.2. It can be observed that when both the
attention mechanism and clustering module are incorporated,
the model achieves the best performance in terms of order
match rate and scheduling efficiency. The match rate reaches
72.16%, an increase of 15.27% compared to the baseline
MASAC, while the average number of relocations decreases
to 6.53, a reduction of 4.44 times. This indicates that the
synergy between the attention mechanism and contrastive
learning significantly optimizes scheduling strategies.

Further analyzing the individual effect of the attention
mechanism, ATT-MASAC achieves a match rate of 64.56%,
improving by 7.67% over MASAC, with average relocations
reduced to 10.23. This shows that the attention mechanism
helps more effectively capture task-relevant information and
improve matching efficiency. When only the contrastive
learning module is added (CL-MASAC), the match rate
slightly increases to 58.47%, but the average relocations
significantly decrease to 9.88, indicating that contrastive
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Figure 4: This figure illustrates how DpLens facilitates multi-level interpretation of scheduling behavior evolution in a
reinforcement learning model across training epochs. (A) Users configure training parameters, enabling PER for enhanced
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action clusters over time.

learning helps enhance the model’s ability to distinguish
states and optimize scheduling decisions.

In summary, the attention mechanism contributes more to
improving the match rate, while contrastive learning tends to
optimize relocation efficiency. Their combination maximizes
performance gains, verifying the effectiveness of the module
design.

6.2 Case Study

We conducted three case studies to evaluate the effective-
ness of our system. The first focuses on the interpretable
analysis of model training mechanisms, while the second
explores region-level scheduling optimization through inter-
active feedback. The third case compares the adaptability
and regional cooperation capabilities of different methods in
dynamic environments.

6.2.1 Interpretable Analysis of Model Training Mecha-
nisms

In this case study, model developers focused on the evolution
of scheduling behaviors in a RL model, aiming to trace the
policy adaptation process across different training epochs
using DpLens.

Users begin by configuring training parameters (Fig-
ure.4A), enabling Prioritized Experience Replay (PER) for
improved sample efficiency. Upon submission, the system
initiates training and logs key metrics such as loss, supply,
dropped orders, and matching records. In the Training Dis-
tribution View, early training stages (Figure.4B) show low
and unstable matching rates, which later converge to 72.45%
(Figure.4C), indicating growing strategy effectiveness.

To analyze temporal and spatial changes, users compare
model performance at epoch 0 and epoch 179. In the Table
View, high-demand regions (e.g., 36, 37, 44) show poor early
performance ( 40%, Figure.4D1), improving significantly by
epoch 179 (to 72.30%, 57.26%, and 65.47%, Figure.4D2).

The Episode Overview and Time View reveal initially erratic
agent behavior (Figure.4E1), which becomes consistent and
policy-aligned in later epochs (Figure.4E2), with smoother
temporal patterns (Figure.4F2) indicating stable strategies.

During peak demand (time slices 0-20), the Demand View
highlights system pressure (Figure.4G). In the Map View,
early epochs show agents wrongly dispatching from high-
demand areas (Figure.4H1), leading to negative rewards (Fig-
ure.411). By epoch 179, agents instead guide vehicles into
these regions (Figure.4H2), earning positive rewards (Fig-
ure.412), demonstrating improved spatial coordination.

The Attention View shows attention weights dispersed
in early stages (Figure.4J1), but later epochs reveal focused
attention on key agents (e.g., 83, 69) and critical areas (Fig-
ure.4J2), enhancing global decision-making. In the Policy
Interpretation View, initial policy distributions are scattered
and unclear(Figure.4K1), while later strategies form distinct,
interpretable clusters with clearer action boundaries in high-
imbalance areas(Figure.4K?2).

Moreover, as shown in the attention matrices of epoch 0
and epoch 179 (Figure.4L1, L2), agents initially focus pre-
dominantly on their own states (e.g., self-attention scores
( 0.9 for R37 and R44), exhibiting limited attention to
other agents within the same cluster. In contrast, by epoch
179, cross-agent attention significantly increases-for instance,
R37’s attention to R44 rises to 0.54-indicating that agents
progressively learn to attend to their cluster peers, thereby
enabling coordinated policy optimization. This collabora-
tive behavior is further supported by the Time View results.
In the early training phase (Figure.4M1), R37 and R44 ex-
hibit independent behaviors, while in the later phase (Fig-
ure Figure.4M2), their actions become highly synchronized,
demonstrating the effect of cluster-based cooperative learn-
ing. Specifically, as R37 adjusts its dispatching strategy,
R44 dynamically adapts its own decisions in response, form-
ing a collaborative relationship. Guided by the attention



Table View Swien to Training Distbution View | Wepiew
+ B

Select Epoch:

Interactive View E T

Episode Overview

0 o | Essoseomemen
P — . ® Amn e F . Training Distribution View Svien o Tl v
= elect Region: ol Sortby meiric: Mtch Rata~ | Order: [Descending
=93 ﬂ
2 M| PN
¢ . <o e ez s o2 &
State:
o viw
- = - = = ) Table View 1o T Dveutin e X wento
osoonding
< Action
% 142 B P
=] 2 . 1o [ O
Revise Action:
. s / - IR C)
06 "
" s m O
. m o B O
s - ™ ot Wiy o o e s
OIOIOROIOIOICICICROROROROIOIOICICOICOIOICICOICOIORON O
00@ e DIOK) D H ® A
® @ ® 0009@ 00 9@ ®% ® ® ® ® OO0 (S}

Figure 5: Interactive policy refinement based on human feedback. (A) The Table View reveals severe oversupply and negative
action values in high-imbalance periods. (B1) The Map View shows poor spatial coordination, with surrounding high-demand
regions receiving no support. (C1) The Time View indicates persistent “Accept” actions and zero rewards. (D1-D2) The Episode
Overview confirms ineffective routing; surrounding areas remain demand-heavy. (E) The expert adjusts action values via the
Interactive View for time slices 0-90, guiding the system to perform “Send” actions. (B2, D3) At epoch 201, the model exhibits
spatially coherent dispatch behavior. (C2) The Time View shows positive rewards and adaptive action changes after slice 90,

reflecting improved policy responsiveness.

mechanism, this joint policy optimization helps alleviate
local congestion and enhances overall reward and system
efficiency.

Overall, the RL model evolves from local, chaotic deci-
sions to globally coordinated, policy-consistent behaviors.
Experts indicated that the multi-level visual analysis pro-
vided by DpLens enhances model interpretability and pro-
vides strong support for scheduling strategy optimization.

6.2.2 Dispatching Model Optimization Based on Inter-
active Feedback

This case focuses on a human dispatcher (E3) with extensive
experience in urban mobility scheduling. E3’s primary re-
sponsibility is to identify suboptimal strategy regions based
on model training outcomes and intervene through interactive
operations to improve overall system efficiency.

At the beginning of the analysis, E3 loads the results
from training epoch 179, where the matching rate has nearly
converged to its upper bound. However, he quickly notices
significant strategic flaws persisting in certain local areas. In
the Table View (Figure .5), E3 examines data from time slice
44 and observes that Region 46 has a severe supply-demand
imbalance value of 742, indicating an extreme oversupply
of vehicles. Surprisingly, the action value assigned to this
region at that time is -0.92, corresponding to the “Accept”
action, meaning the system continues to dispatch additional
resources into the area.

E3 cross-validates this observation in the Map View (Fig-
ure.5B1) and confirms that Region 46 not only accumulates
excessive idle vehicles but also borders several high-demand
regions such as 44, 45, and 52. Despite this, the system fails
to guide surplus vehicles outward effectively. The Time View
(Figure.5C1) further reveals that Region 46 consistently per-
forms the “Accept” action across multiple high-imbalance
moments, while its reward signal remains at zero for an ex-
tended period, reflecting inefficient decision-making without
positive environmental feedback. The Episode Overview
(Figure.5D1) shows that Region 46 maintains the “Accept”
action across all time slices, with no signs of effective dis-
patching behavior. As illustrated in Figure.5D2, surrounding
regions remain demand-heavy throughout, yet vehicles are

still routed into Region 46. Based on these findings, E3
concludes that Region 46 should instead perform a “Send”
action and decides to intervene manually. Using the Interac-
tive View provided by the system (Figure.5E), E3 iteratively
modifies the dispatch policy of Region 46 from epoch 179
onwards. For time slices 0-90 (after which the region be-
comes supply-deficient), he uniformly sets the action value to
0.6 to explicitly indicate proactive vehicle outflow. The sys-
tem incorporates these interventions, retrains the model, and
generates intermediate results at epoch 201 for performance
validation.

In epoch 201, E3 observes a significant shift in the model’s
behavior. In the Episode Overview (Figure.5D2), Region 46
consistently performs the “Send” action (denoted by trian-
gles) during the first 90 time slices, with vehicle outflows
directed toward high-demand areas such as regions 44, 45,
52, 53, and 60, forming a reasonable spatial resource flow. In
the Map View (Figure.5B2), Region 46 exhibits prominent
outward blue arrows during several time slices, indicating
high-volume dispatches that alleviate regional demand pres-
sure. Additional inspection of early time slices confirms that
the manual intervention led to vehicle redirection toward
demand-heavy neighboring regions (Figure.5D3).

Temporally, the Time View (Figure.5C2) shows that Re-
gion 46 performs the “Send” action during most of the
first 90 time slices and frequently receives clear positive
reward signals (blue arcs), suggesting environmental vali-
dation of the revised strategy. More importantly, after time
slice 90—when the region becomes supply-constrained—the
model adaptively shifts its behavior from “Send” to “Accept”,
demonstrating its responsiveness to evolving supply-demand
dynamics.

Finally, a comparison in the Table View (Figure.SE) re-
veals that the matching rate of Region 46 improved from
72.75% at epoch 179 to 100%. More importantly, this inter-
vention triggered collaborative optimization in surrounding
areas—for example, Region 45’s matching rate increased
from 59.07% to 100%, and regions 44 and 43 also experi-
enced significant gains, indicating a spillover effect of the
optimized policy. As a result, the overall system scheduling
efficiency improved substantially.



It is worth noting that while the matching rate at epoch
201 increased significantly to 73.346% after expert inter-
vention, this modification only altered the action outputs
in response to environmental states and did not directly up-
date the model parameters. Hence, its impact was limited
to the current episode’s behavior, without deeper adjustment
to the policy network. To address this limitation, the sys-
tem writes the high-value experience samples derived from
human intervention into the PER buffer, assigning them a
priority higher than any existing samples. This ensures their
higher sampling probability in subsequent training. PER
increases the reuse of experiences with large TD errors, al-
lowing the model to revisit critical decisions more frequently,
thereby accelerating policy convergence. In this case, PER
effectively guided the model to repeatedly learn from the
dispatcher’s demonstration behavior, gradually internalizing
it into the policy network. The model was then trained for an
additional 50 epochs. As training progressed, performance
continued to fluctuate upward, reaching a new peak matching
rate of 72.55% at epoch 236 (Figure.5F2). Although the im-
provement margin was limited, it demonstrated the model’s
capacity to learn from human intervention. The Training Dis-
tribution View further confirms this: epoch 201 (Figure.5F1)
shows the highest recorded performance, with epoch 236
closely following, reflecting successful strategy transfer and
generalization.

This process illustrates a mechanism of human-in-the-loop
policy fusion: expert interventions act as behavioral guid-
ance, PER provides experience reinforcement, and continued
training enables policy learning. The visual analytics system
played a crucial role throughout, offering transparency and
traceability to support deeper understanding and optimization
of the policy evolution.

6.2.3 Comparative Analysis

To compare the scheduling adaptability and regional col-
laboration capabilities of different algorithms in highly dy-
namic environments, experts conducted 500 training episodes
for MASAC, CL-MASAC, ATT-MASAC, and CL-ATT-
MASAC with a fixed fleet size of 10,000. Match rate curves
were generated, and all methods were tested in the same sce-
nario. The results were loaded into a visual analytics system
for comparison and analysis.

First, the training results (Figure. 6) show that MASAC
performed the weakest, with match rates hovering around
50% for a prolonged period, indicating insufficient adapt-
ability and collaboration. CL-MASAC showed rapid im-
provement early in training and stabilized around 60%.
ATT-MASAC started slower but, leveraging the attention
mechanism, improved over time to surpass CL-MASAC.
CL-ATT-MASAC, which combines clustering and attention
mechanisms, converged faster with smaller fluctuations and
achieved significantly higher match rates, demonstrating the
effectiveness of the collaborative optimization of both mech-
anisms.

Furthermore, experts selected Region 19 in New York City
as a case study within the visual analytics system to examine
algorithmic performance under dynamic demand conditions.
As shown in Figure. 7A, this region experienced a sharp
increase in demand during time steps 19-24, followed by a
rapid decline in time steps 25-30, making it an ideal setting
for evaluating the adaptability and coordination capabilities
of different methods in realistic dispatch scenarios.

As illustrated in Figure.7B, during the demand surge (time
steps 19-24), MASAC received only limited support from
Region 10, reflecting weak regional collaboration. More crit-
ically, during the demand drop (time steps 25-30), MASAC
continued to receive a large number of vehicles from Re-
gions 10, 14, 15, and 21, demonstrating delayed response
and inefficient dispatch that contradict the actual demand

Training Match Rate Comparison (fleetSize = 10000)
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Figure 6: Training match rate curves of MASAC, CL-
MASAC, ATT-MASAC, and CL-ATT-MASAC under a fixed
fleet size of 10,000.

trend. In contrast, as shown in Figure.7C, CL-MASAC was
able to dispatch vehicles to Region 19 from Regions 10, 14,
and 21 in a timely manner during the rising demand phase.
Notably, Region 14 contributed the most support, and the
other two regions, which belong to the same cluster, exhib-
ited relatively consistent dispatch behavior. However, the
method still showed a certain degree of lag during the de-
mand decline. Figure.7D shows that ATT-MASAC produced
overall weaker responses. Although the attention mechanism
is capable of capturing dynamic dependencies, it struggled to
establish efficient cross-regional coordination in the presence
of short-term, high-variance demand fluctuations, indicating
limited effectiveness in such scenarios.

Among all methods, CL-ATT-MASAC demonstrated the
best overall performance. As shown in Figure.7E, during the
demand surge, it promptly dispatched vehicles from Regions
10, 15, and 21 to Region 19. Region 15, from a different
cluster, provided flexible cross-cluster support, while Re-
gion 21, within the same cluster, offered stable and timely
assistance—together forming an efficient collaborative dis-
patch pattern. During the demand drop, the method rapidly
ceased unnecessary dispatches and retained only minimal,
flexible support from Region 21, achieving fine-grained and
low-redundancy resource allocation.

In summary, this case study reveals substantial differences
among the four methods in terms of regional coordination, re-
sponse efficiency, and adaptability under dynamic scheduling
conditions. CL-ATT-MASAC exhibited superior responsive-
ness and collaboration in the face of sharp demand changes.
In contrast, MASAC suffered from significant delays and
inefficient dispatch. CL-MASAC and ATT-MASAC each
showed advantages in early-stage responsiveness or long-
term optimization but also demonstrated notable limitations.

6.3 User Study

A user study was conducted to evaluate the workflow, visual
design, and usability of DpLens. It aimed to validate its effec-
tiveness and gather feedback from target users for iterative
refinement.

Participants. A total of 20 participants were recruited,
including 5 transportation domain model developers (2 PhD
holders and 3 senior engineers), 12 graduate students with
backgrounds in visual analytics (9 master’s and 3 doctoral
students), and 3 professionals from urban traffic management
departments (including expert E3 involved in the case study
of this research). This diverse group ensured representation
of both technical users and real-world domain experts, en-
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demand.

abling the collection of multifaceted feedback to validate the
system’s domain applicability and usability.

Evaluation Tasks. Participants used DpLens for three
core tasks:

(1) Model Training Analysis: Participants were required
to describe the training trends of a reinforcement learning
model and evaluate its overall performance based on the
training metrics (e.g., reward curves, loss functions) and
relevant visualizations presented by the system.

(2) Episode Exploration and Agent Behavior Analysis:
This task involved participants selecting specific training
episodes (e.g., an episode from the later stages of training)
to conduct in-depth analyses of agent action sequences, re-
sponses to different traffic flow/environmental states, and the
relationships or interactions among multiple agents. They
were also encouraged to compare different episodes to sum-
marize the evolutionary characteristics of agents throughout
the training process.

(3) Decision Process Understanding: Participants needed
to choose a specific state during the model’s operation and,
by utilizing information provided by the system such as
feature importance and state feature values, explain the basis
and process of the reinforcement learning model’s decision-
making in that state.

Study Procedure The in-person study began with an in-
troduction to DpLens, its objectives, the RL model, visual
components, and workflow. A 20-minute system demonstra-
tion followed, explaining view functionalities and interaction
for data exploration. Participants then had ample time for
hands-on familiarization before completing the evaluation
tasks. Researchers were available for assistance. Finally,
participants completed an anonymous questionnaire with 7-
point Likert scale items (1="strongly disagree”, 7="strongly
agree”) to provide systematic feedback.

We conducted significance testing on the questionnaire
results. As shown in Table.3, the scores for all Likert scale
items were significantly higher than the neutral midpoint,
with item means ranging from 6.40 to 6.80 and standard de-
viations between 0.41 and 0.76. One-sample t-tests indicated
that all items yielded t-values greater than 14 and p-values
less than 0.001 (e.g., Q3: mean = 6.80, SD = 0.41, t = 30.51,
p i 0.001), demonstrating that the ratings for all items were
significantly above the neutral level with a high degree of
statistical significance.

Results and Discussion Questionnaire results (Figure.8)
showed a positive overall perception of DpLens, with mean
scores significantly above neutral, indicating strengths in

Table 3: Descriptive Statistics and t-test Results

Item Mean Std. Dev.  t-value p-value
Ql 6.60 0.60 19.44 < 0.001
Q2 6.55 0.60 18.86 < 0.001
Q3 6.80 0.41 30.51 < 0.001
Q4 6.40 0.68 15.77 < 0.001
Q5 6.50 0.69 16.24 < 0.001
Q6 6.60 0.50 23.13 < 0.001
Q7 6.50 0.76 14.69 < 0.001
Q8 6.65 0.49 24.22 < 0.001
Q9 6.60 0.68 17.09 < 0.001
Q10 6.60 0.60 19.44 < 0.001
Q11 6.75 0.44 27.68 < 0.001
Q12 6.65 0.49 24.22 < 0.001
Q13 6.65 0.59 20.18 < 0.001

design and functionality.

Completeness & Usability Interaction: For Q1, partic-
ipants showed strong consensus, with 13 out of 20 giving
the highest score of 7. Q2 and Q3 also received high evalua-
tions, with 95% and 100% of participants rating them 6 or 7,
respectively. For Q4, 90% of participants provided positive
feedback with scores of 6 or above.

Functionality: For Q6, all participants rated the item 6 or
7. QS5 and Q7 received the highest score of 7 from 60% and
65% of participants, respectively, underscoring the system’s
effectiveness in revealing internal model mechanisms. Q8
and Q9 were also widely endorsed, with 90% of users rating
Q9a6or7.

Visual Design: For Q10, participants expressed strong
agreement, with 95% assigning scores of 6 or 7. Q11 and
Q12 were highly praised, with 100% of participants rating
them 6 or higher, indicating that visual elements played a
supportive role in enhancing understanding and exploration.
After reevaluation from a visual design perspective, Q13
again received strong approval, with 14 participants assigning
the highest score of 7.

In summary, the study affirmed DpLens’s capability in
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presented information is clear, and the interaction design
supports analysis.

Q4: The interaction and operation logic of the system align with
my expectations

Functionality

) 0%
5: The system provides sufficient data for mulilevel analysis
of reinforcement learning workflows.
Q6: Well-designed modules enable efficient exploration of e
agent behavior and decision processes.
Q7: The RL model's decision process is transparent and easy e
1o comprehend.
QB Th systom supports the comparion of deront stales |y
and reveals pattems through interaciive visualizations.

Visual Design

Q9: The system can explore the relation and interaction among
different agents
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Qt: The visuszaton and nfracton elp me auickly select |y

and explore specific episodes or agent interactions.

12 The system benefis my undersanding of reinorcement |y
learning models through clear visual and interactive features.

Q13: All views function well and are capable of meeting the T

analytical tasks of this study
mt 2 3 4 5 W6 7

Q10: | can easily understand the visual design of the system.

Figure 8: User feedback on DpLens from the questionnaire
(N=20). The chart displays 7-point Likert scale responses
(1=strongly disagree, 7=strongly agree) to 13 questions cov-
ering the system’s Completeness & Usability Interaction,
Functionality, and Visual Design.

assisting users with RL model understanding, analysis, and
evaluation. Participants found it functionally complete, inter-
actively fluid, and visually intuitive.

7 DiscussioN AND FUTURE WORK

This section discusses the broader applicability and scala-
bility of DpLens, acknowledges its current limitations, and
outlines promising avenues for future research.

Generalization. The core visual analytics framework of
DplLens is designed to be adaptable beyond the current taxi
dispatching task. Its analytical principles—particularly for
dissecting reinforcement learning (RL) training dynamics,
regional decision behaviors, and agent interactions—can gen-
eralize to other multi-agent RL (MARL) applications such as
logistics, mobility-on-demand, and urban resource allocation.
Furthermore, the visualization pipeline is algorithm-agnostic,
allowing potential adaptation to a range of RL paradigms
(value-based, policy-based, actor-critic) and domains such
as robotics, game Al or finance. By providing interpretable
and interactive representations, DpLens supports broader RL
literacy for both novices and domain experts.

Scalability. The proposed method exhibits good scalabil-
ity and transferability. Although the current experiments are
conducted based on the New York taxi dataset, the core of the
method lies in travel pattern driven regional clustering and
cross region dispatch optimization. This allows the frame-
work to be transferred to other transportation scenarios such
as ride hailing dispatch in cities like Chengdu and Beijing
without modifying the overall structure, simply by adapting
to localized travel data. Meanwhile, the CLATTMASAC
framework supports shared policy networks and integrates
a multihead attention mechanism to enable information ex-
change among agents. As a result, it can be applied to traffic
dispatch scenarios with varying scales, numbers of agents,
and agent types, demonstrating strong scalability.

Limitations and Future Work. DpLens currently fo-
cuses on post-hoc analysis and human-in-the-loop policy
refinement, without supporting real-time training monitor-
ing or integration with deployment pipelines. In this study,
region-level taxi dispatch is approximated using grid-based
modeling, where vehicle movement costs are estimated via
Manhattan distances rather than real road networks and dy-

20% 40% 60% 80% 100%

namic traffic conditions. While this improves trainability
and computational efficiency, it may limit realism and ap-
plicability in complex urban settings. Future work includes:
(1) Incorporating real-world road topology and dynamic traf-
fic states to better estimate dispatch costs based on actual
OD distances and travel times; (2) Supporting real-time in-
spection of training progress and anomalies; (3) Enabling
comparative analysis across multiple model variants or train-
ing runs; and (4) Integrating with mainstream RL libraries
and MLOps tools to enhance reproducibility and real-world
deployment.

8 CONCLUSION

In this work, we proposes a taxi dispatch framework based on
MARL, integrated with the visual analytics system DpLens
to enhance the effectiveness and interpretability of dispatch
strategies. By modeling urban regions as agents with het-
erogeneous action spaces, the framework enables joint op-
timization of vehicle relocation behaviors across regions,
significantly improving order matching rates while reduc-
ing the number of vehicle relocations. The DpLens system
supports multi-view policy analysis and critical state identi-
fication, allowing users to explore the evolution of dispatch
strategies and inter-agent collaboration mechanisms from
both macro and micro perspectives. Case studies and user
evaluations demonstrate that the approach performs excel-
lently in terms of model interpretability, policy optimization,
and system robustness. Future work will focus on extend-
ing real-time monitoring capabilities, strengthening model
optimization support, and further validating the system’s
long-term practicality.
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